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Two-dimensional cusped interfaces are line singularities of curvature. We create such 
cusps by rotating a cylinder half immersed in liquid. A liquid film is dragged out of 
the reservoir on one side and is plunged in a t  the other, where it forms a cusp at  finite 
speeds, if the conditions are right. Both Newtonian and non-Newtonian fluids form 
cusps, but the transition from a rounded interface to a cusp is gradual in Newtonian 
liquids and sudden in non-Newtonian liquids. We present an asymptotic analysis 
near the cusp tip for the case of zero surface tension, and we make some remarks 
about the effccts of a small surface tension. We also present the results of numerical 
simulations showing the development of a cusp. I n  those simulations, the fluid is 
filling an initially rectangular domain with a free surface on top. The fluid enters 
from both sides and is suckcd out through a hole in the bottom. 

1. Introduction 
Our photographs (figures 3-15) were produced in a four-roll mill apparatus of the 

type introduced by G. I. Taylor to study the deformation of drops and bubbles in a 
pure straining flow. We built the apparatus with the same purpose in mind, but first 
put the cylinders into rotation in a partially filled apparatus whose configuration and 
orientation relative to  gravity are obvious from the photographs. As a result. we 
discovered the rollers that were described by Joseph, Nguyen & Beavers (1984). 

At that time, we noticed an entirely different flow regime, the two-dimensional 
cusped interfaces which we shall describe in this paper. At this point, we ask the 
reader to inspect the photographs. They show cusped, two-dimensional interfaces. 
No rounding can be detected, at least not on a visible lengthscale. 

Richardson (1968) did an elegant analysis of two-dimensional bubbles in Stokes 
flow. He proved that the only possible line singularity of the interface between a 
viscous liquid and an inviscid two-dimensional bubble is a true cusp. For a cusp that 
opens on the negative x-axis, his expression for the leading contribution to  the 
stream function, expressed in polar coordinates, is 

0- 
@ = -  27cp r log r sin q5. 

Here a is the surface tension coefficient and p is the viscosity. This formula shows 
that there is a point force 2a exerted by the free surface on the fluid and that the 
velocity near the origin is in the negative x-direction. The velocity near the origin is 
infinite and, perhaps more seriously, the velocity gradient is not square integrable, 
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FIGURE 1. Flow past a cusp. 

leading to an infinite amount of energy dissipation. The free surface a t  leading order 
simply coincides with the negative x-axis ; the actual opening of the cusp would have 
to be determined from higher-order corrections, which are worked out here at lowest 
order. 

Lamb (1932, p. 607) derived (1) for the problem of a point force acting at the centre 
of a circle and he notes that the solution ' . . . fails to give a result.. . ' as the radius of 
the circle tends to infinity. In our problem, (1) arises from a local analysis near the 
cusp, and the behaviour for large r is irrelevant. However, there are also physical 
difficulties associated with (1) for very small r on which we comment below. We shall 
regard (1) as valid in an intermediate range, where r is small compared to geometric 
lengthscales of the problem, but nevertheless log rff/''p cannot be regarded as 'large '. 

Evidently the main features of our experiments cannot be explained in terms of ( l ) ,  
since the velocity of the fluid is in the positive, rather than the negative, x-direction, 
as shown in figure 1. Moreover, the deviation of the interface from a flat surface, 
neglected by Richardson, is clearly an important feature of the experiments. The 
experiments also suggest that, although cusped free surfaces can appear in Newtonian 
fluids, they are easier to  create in non-Newtonian fluids. The cusp does not appear 
a t  the slowest speeds; i t  forms more gradually in Newtonian than in non-Newtonian 
fluids. This is reminiscent of the transition from rounded to  pointed ends in the bubble 
experiments of Runscheidt & Mason (1961). 

Our analysis takes a different point of view from Richardson's. We first analyse the 
local behaviour near a cusp singularity in the absence of surface tension. In this case, 
we find an interface shape given at leading order by y2 = -cx3 for Newtonian and 
linear viscoelastic fluids. The stresses at the cusp in a linear viscoelastic fluid are less 
singular than in a Newtonian fluid. On the other hand, nonlinear effects in 
viscoelastic fluids are probably important near the stagnation point that must be 
present on a smooth interface. The build-up of extensional stresses near such a 
stagnation point is likely to favour cusping. In  the presence of surface tension, our 
analysis is not valid close to the tip of the cusp, where the leading contribution (if 
there is a true cusp) should be given by Richardson's solution. We calculate where 
the magnitude of the resulting velocity would be comparable to that of the 
macroscopically observed flow. For the surface tension parameters involved in the 
experiments, this is the case only at extremely small lengthscales, extending beyond 
the limits of the validity of Laplace's theory of surface tension. The issue was 
addressed by Rayleigh (1890), who notes that ' ... the walls of a moderately small 
cavity certainly tend to collapse with a force measured by the constant surface 
tension of the liquid. The pressure in the cavity is first proportional to the surface 
tension and to the curvature of the walls. If this law held without limit, the 
consideration of an infinitely small cavity shows that the intrinsic pressure would be 
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V 
FIGURE 2. A gas bubble rising in a non-Newtonian liquid. Bubbles rising in Newtonian liquids 

do not tail. The shape of the bubble depends strongly on the bubble volume. 

infinite in all liquids. Of course, the law really changes when the dimensions of the 
cavity are of the same order as the range of attractive forces, and the pressure in the 
cavity approaches a limit. ’ We therefore believe that surface tension plays no major 
role in the experimentally observed flows and that the analysis given here describes 
the main features. 

Richardson’s result and ours may have some relevance for pointed bubbles, which 
are point singularities of the curvature. Such singularities have been described by 
Taylor (1934, 1964) Rumscheidt & Mason (1961), Grace (1971), Buckmaster (1972, 
1973), Acrivos & Lo (1978), Rallison & Acrivos (1978), Hinch & Acrivos (1979), and 
Sherwood (1981) for the case of Newtonian fluids. Buckmaster is the only author in 
this list who discussed Richardson’s results. He comments that Richardson has 
‘ . . . shown that such discontinuities, if they exist, must be genuine cusps.. . ’. He also 
expresses reservations about the relevance of two-dimensional cusps : ‘On the one 
hand it is doubtful that pointed two-dimensional drops could be stable, and on the 
other there is a point force associated with corners - which a three-dimensional drop 
would not generate. ’ These remarks appear to have halted further consideration of 
two-dimensional cusps. 

The existence of point singularities for axisymmetric bubbles in Newtonian fluids 
and the decision about whether these might be corner or cusped singularities still 
seems not to have been decided. 

There is a marked difference between the shape of air bubbles rising in Newtonian 
and non-Newtonian liquids, with a much stronger tendency toward cusping in the 
non-Newtonian case (see figure 2). 

The flow at  the trailing edge of a rising gas bubble is in a rough way analogous to 
flow near the cusp in our experiments, though there are obvious and perhaps not so 
obvious differences between streaming around axisymmetric and plane cusps. The 
tail shown in figure 2 occurs only in non-Newtonian liquids and has been reported in 
experiments by Phillippoff (1937), Warshay et al. (1959), Mhatre & Kinter (1959), 
Astarita & Apuzzo (1965), Barnett, Humphrey & Litt (1966), Calderbank (1967), 
Calderbank, Johnson & Loudon (1970), Leal, Skoog & Acrivos (1971) and Zana & 
Leal (1978). Again, i t  is not certain that the tail can form a true cusp. Astarita & 
Apuzzo note that ‘The bubble is.. . unexpected ; it is clearly prolate and the lower 
pole is markedly cuspoidal. ’ Hassager (1985) reports experiments where the bubble 
is not axisymmetric but flattened : it appears to have a straight edge at  the trailing 
end. 

We present our experimental results in the following section. Section 3 contains the 
local analysis of fluid behaviour near a cusp. In $4, we show some numerical 
simulations using the FIDAP package. The flow there involves a fluid entering from 
both the right and left and bounded by a free surface on top. The fluid is being sucked 
downward. The numerical results are consistent with the interpretation that a 
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FIGURE 3. Cylinder coated with 12500 cs silicone oil cusps in air. (a )  Liquid is dragged down 
between the cylinders, ( b )  liquid is dragged up between two cylinders. 
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FIGURE 4. Cusp point on the 12500 cs silicone oil as seen through a Nikon microscope. 

singularity in the free surface is developing if the surface tension is small enough. For 
larger values of surface tension, a steady state with a smooth interface is reached 
instead. The final section of the paper gives a summary of the results. 

2. Experiments 
Two equal cylinders whose centrelines lie in the same plane z = const., 

perpendicular to gravity, are immersed in liquid approximately up to their 
centreline. Then the cylinders are put into counter rotation with the same speed. 
There are two possibilities ; the liquid is drawn up a t  the outside of the cylinders and 
forced down in the centre, or vice versa, as in figure 3. Typically more than half of 
each cylinder is coated with a liquid of relatively uniform thickness. The thickness 
and covering of the arc of the coating liquid depends on the viscosity of the liquid 
and the speed of the cylinder. 

Cusps form in some liquids and not in others. Once a cusp forms it will persist and 
sharpen as the angular velocity is increased. Some liquids with sharp cusps are 
exhibited in figures 3-11. Liquids which so not cusp have clearly rounded ends as in 
figure 7 ( b ) .  Tables 1 and 2 list fluids which form cusps and table 3 lists fluids which 
do not cusp a t  the angular speeds we attained. The fluids that do eventually cusp 
apparently do not do so a t  the slowest speed (see figures 8-15). It therefore appears 
that cusping is a threshold phenomenon characterized by a threshold parameter 
which in our experiments is a critical value of the angular velocity of the cylinders. 
Some specific values of this critical speed are given in the figure captions; to  convert 
this rotation speed into a linear speed one has to multiply by the observed radius a t  
the point of cusping which is slightly larger (table 4) than the radius 1.25 cm of the 
cylinder. For non-Newtonian fluids, the critical value of the rotation speed is very 
distinct. Below this value the interface is round. At the critical speed the interface 
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FIGURE 5 .  Cylinder coated with STP (polyisobutylene in petroleum oil) cusps in air. 
The liquid is dragged down between t h e  cylinders 

suddenly transforms to  a cusp. The critical speed is not distinct for those Newtonian 
fluids for which a cusp was  observed. At  slow rotation speeds the interface is round. 
As the rotation speed increases, the shape of the interface changes from rounded to  
pointed in a continuous manner, until a t  what we define as  the critical speed the 
interface appears t o  be a cusp. Once a cusp is formed, further increases in the angular 
velocity will only sharpen the cusp or end in an instability characterized by fingering. 

The liquids listed in table 1 which do form apparently unambiguous cusps are non- 
Newtonian. They have non-zero normal stress differences and they all climb rotating 
rods. At  the same time, these fluids are on average more viscous than the Newtonian 
liquids which do, and those which do not, form cusps and are listed in tables 2 and 
3. We tested the liquids in tables 2 and 3 and none of them will climb a rotating rod. 
Newtonian fluids which are too mobile will not cusp at the speeds we could attain in 
our apparatus and may never cusp because of turbulence. 

We measured the critical value of the angular velocity of the cylinders for the 
transition from rounded to  cusped ends in a number of liquid-air systems and in the 
two-liquid SAE 30 motor oil and water system shown in figure 8. A dimensionless 
capillary number was calculated by the formula Ca = ,uU/u, where ,u is the viscosity, 
u the surface tension coefficient, and an estimate for the velocity U is wr,  where w is 
the angular speed of the cylinder and r is the radius of the fluid a t  the cusp point. The 
value of Ca for SAE 30-water was computed using a surface tension constant of 
9.22 dyn/cm ; the surface tension constant tabulated in table 3 is for SAE 30 against 
air. 

For all Newtonian fluids, the measured values of Ca, are in excess of 2.5 as shown 
in table 4. Some non-Newtonian fluids lead to  lower values of Ca,. However, this 
appearance may be dccciving. The ‘viscosity’ used in computing Ca is the zero-shear- 
rate viscosity. The flows studied hcrc are likely to  involve significant extensional 
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FIGURE 6. Cylinder coated with M1 (polyisobutylene in kerosene and polybutene) cusps in air. ( a )  
19 r.p.m.. ( b )  7 5  r.p.m. At 75 r.p.m. a ribbing instability has developed. The cusped interface has 
developed scallops. 
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FIGURE 7. Low-molecular-weight silicone oils do not cusp at 200 r.p.m. (a )  500 cs is marginal, 
but a Nikon microscope shows it does cusp. ( b )  200 cs silicone oil does not cusp at 200 r.p.m. 
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FIGURE 12. Scale for x 64 magnification of cusp tip in figures 13. 14 and 15 using a Nikon 
microscope. Each bar is 0.001 in. ; 0.040 in. altogether. 

motion, and extensional viscosities of non-Newtonian fluids increase substantially 
with the rate of extension. 

We tried to obtain two-dimensional cusped interfaces in a number of two-liquid 
systems. In  general we do not expect to achieve cusped interfaces in such systems ; 
the dynamics which would lead to a cusp in air will give rise to a fingering flow or 
rollers in a two-liquid system. Rollers and fingering flows in many of these two-liquid 
systems have already been described by Joseph et al. (1984). Rollers form when one 
of the two fluids is much more viscous than the other. For example, rollers form in 
STP-water and silicone oil-water systems with oils in excess of 1000 P. Therefore, 
fluids like 12500 cs silicone oil, STP and TLA 510, which give rise to cusps in air, lead 
to rollers in water. On the other hand, 100 cs silicone oil in water gives rise to  the 
fingering of water into silicone oil at higher spccds and not to  rollers. 

For lower viscosity liquids the interface remains smooth a t  low speeds, while a t  
higher speeds one liquid will finger into the other. In  thinking about this, it is useful 
to imagine how the streamlines would look a t  nearly cusped smooth surface. This is 
sketched in figure 16. It is clear that the nose of the interface must be a stagnation 
point if the interface is not cusped. The internal motion of the fluid inside the nose 
is yet more complicated. It is being dragged toward the nose near the interface and 
must either be turned around by the pressure a t  the stagnation point into the double 
eddy or else finger into the fluid outside the nose. At higher speeds both these 
possibilities are realized intermittently. 

There are evidently some pairs of liquids for which cusp solutions can be realized. 
One of these, motor oil and water, is shown in figure 8. This cusped surface is not two- 
dimensional, but scalloped. The crests of the scallops are fingering sites for small 
water bubbles to entcr the oil. The scalloping is a fairly common feature and it can 
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FIGURE 15. The critical rotation speed for castor oil is approximately 113 r.p.m. (a )  67 r.p.m., 
(b)122 r.p.m. 

be seen in the Ml-air interface shown in figure 6(6). At higher speeds the air a t  a 
cusped interface fingers into the liquid at these sites. Fingering always appears a t  
scallop sites, really by definition because the scallop is what remains after the bubble 
has broken away. This kind of fingering leads to emulsions (cf. $5.3 in Joseph et al. 
1984). 

3. Theory 
We are going to assume that there is a cusp a t  the origin of the (x, y)-plane as 

shown in figure 1.  
The flow is assumed to be a small perturbation of uniform flow with velocity U in 

the positive x-direction, and the free surface is a small perturbation of the negative 
x-axis. Let (u,w) denote the perturbations to  the velocity and let h denote the 
position of the free surface that is located above the cusp. We first analyse 
Newtonian fluids with zero surface tension. We introduce a stream function $ by 

u = $bu, v =  -$bz. (2) 

The positive x-axis is a line of symmetry, we first look for antisymmetric stream 
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Fluid 
Surface tension 

Viscosity (P) Density (g/cm3) (dyn/cm) 
1 YO Aqueous Polyox 61.2 

M1 30.0 
Silicone oil - 12500 cs 122 
STP 143 
TLA 510 220 

2 YO Aqueous Polyox 600 

Honey 109 

1 .000 
1.125 
0.859 
0.975 
0.858 
0.868 
1.40 

48.4 
44.4 
29.9 
21.5 
35.0 
31.1 
69.3 

TABLE 1. Representative values of the viscosity and surface tension of cusping non-Newtonian 
liquids at  temperatures in the neighbourhood of 23 "C. 

Surface tension 
Fluid Viscosity (P) Density (g/cm3) (dyn/cm) 

Castor oil 8.15 0.960 35.1 
Glycerin 8.30 1.265 63.3 
Silicone oil - 500 cs 4.86 0.971 21.1 
Silicone oil - 1000 cs 9.71 0.971 21.2 
Silicone oil - 5000 cs 48.6 0.971 21.3 

TABLE 2. Representative values of the viscosity and surface tension of cusping Pu'ewtonian 
liquids at temperatures in the neighbourhood of 23 "C. 

Fluid 

SAE 30 Motor oil 
Safflower oil 
Silicone oil - 200 cs 
Soybean oil 

Surface tension 
Viscosity (P) Density (g/cm3) (dyn/cm) 

2.80 
0.469 
1.94 
0.489 

0.886 
0.920 
0.970 
0.922 

35.0 
23.0 
21.0 
25.7 

TABLE 3. Representative values of the viscosity and surface tension of Newtonian liquids that 
do not cusp at temperatures in the neighbourhood of 23 "C. 

System 

Newtonian fluids 
Castor oil 
Glycerin 
Silicone oil - 500 cs 
Silicone oil - 1000 cs 
Silicone oil - 5OOO cs 
SAE 30 Motor oil-water 

Non-Newtonian fluids 
Honey 
Polyox (1 Yo) 
Polyox (2%) 
Silicone oil - 12500 cs 
M1 
STP 

Critical angular 
velocity (r.p.m.) 

113 
128 
75 
41 
26 
51 

5.58 

0.8 
3.0 
2.4 
2.9 

52 

Critical radius (em) 

1.78 
1.49 
1.64 
1.40 
1.57 
1.61 

1.92 
1.35 
1.97 
1.50 
1.90 
1 .a0 

ca ,  

4.89 
2.62 
2.96 
2.75 
8.21 
2.57 

1.78 
9.24 
2.10 
2.64 
0.48 
2.24 

TABLE 4. Critical angular velocity and Ca, values for the  formation of a cusp 
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I a l l  I I I  
\\ 

FIGURE 16. distorted interface in a two-liquid system. The point A is a stagnation point or a cusp. 
When Q = 0, each fluid covers one-half of the cylinder. We do not know which fluid will finally be 
on tJhe rod. There is nothing in 09 equation to tell us; contact angles are not enough. 

functions, corresponding to symmetric flow fields. In  polar coordinates, we then have 
the following expression for the stream function (cf. Dean & Montagnon 1949; 
Michael 19581 : 

$ = +[A sin ( A $ )  +B sin ( ( A  - 2) $)I ; (3) 

this expression incorporates the desired symmetry. A t  qi = x ,  we must satisfy the 
conditions of z e r o p d s h e a r  and normal stress, 

U1/+V, = 0, 2yv,--p = 0, (4) 

which can be shown to translate into 

We may evaluate (5) ,  using (3), and we find that 

[hA+(h-2)B]sin(hn) = 0: 

( A  +B) cos (An) = 0. ( 6 b )  

Clearly, we have non-trivial solutions for A = $. The linearization of the kinematic 
free surface conditions leads to  

Uh' = v = -$, = kr,  (7 )  

(8) 
1 
U 

h = -rA(A +B). and hence 
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Symmetric stream functions (i.e. antisymmetric flows) are given by the expression 

(9) $ = #[A  cos (A#)  + B  cos ( ( A  - 2 )  #)I. 
In this case, (5) leads to 

[hA+(A-2)B]cos(An) = OJ 

( A  +B) sin ( A X )  = 0. J 
Again, A = $ is a solution ; in place of ( 8 )  we get h = 0. 

Hence, if surface tension is neglected, cusped solutions with h - ri are possible. 
Figure 17 compares measured values of the cusp tip with y = -cxi. This type of 
comparison between theory and experiment is only qualitative since we do not know 
c or the values of x for which the higher-order corrections become important. The 
higher-order corrections would be a composition of symmetric and antisymmetric 
functions like (3) and (9) in a combination determined globally. 

Now, let us consider what happens if surface tension is included. Then we must 
change several things. First, we must include a term (cr/,uU) +rr,. on the right-hand 
side of the normal stress conditions (5) ; this term arises if we re-express h” using ( 7 ) .  
This changes (6b )  to  

( A  + B )  2 cos (An)--sin Ca (An) = 0. (11) [ 1 
Hence A becomes the root of tan (An) = 2Ca, which approaches $ as Ca + co. (In the 
antisymmetric case, we still find A = and h = 0.) Second, the solution (1) cannot 
be valid all the way up to  the cusp. This is because a t  the cusp the angle of the 
interface has a jump of 2n, leading to a delta-function singularity in the traction. 
This point force must be balanced by a singularity in the flow. This consideration led 
to  Richardson’s (1968) solution ( l ) ,  which may bc written as 

r log ( r r r / 2 n p )  sin # . (12) 

The velocity resulting from (12) has a logarithmic singularity a t  the cusp; the 
assumption of small perturbation of uniform flow on which the preceding analysis 
was based is thus rendered invalid. The velocity gradient resulting from (12) is not 
square integrable and thus there would be an infinite amount of energy dissipation. 
This raises the questions about the physical realizability of a solution such as (12). 

On the other hand, in order for the velocity from (12)  to be of the same order as 
U ,  we must have logr - 27cCa. Here it is understood that r is made dimensionless by 
a geometric lengthscale. These scales are the only ones available for Stokes flow in 
which U ,  cr and p are the material parameters. The density cannot enter into this list. 
We must have a Stokes flow locally near the cusp singularity where highest 
derivatives are ever more dominant. In fact, even globally the Reynolds number 
based on cylinder diameter and speed is never greater than one and is usually orders 
of magnitude smaller than one. A convenient geometric lengthscale is the distance to 
the cusp point, slightly larger than the cylinder radius, 1.25 cm. Using 2.5 as a lower 
bound for Ca, we find that logr must be on the order of 15.7. From this we conclude 
that Richardson’s solution does not dominate over the macroscopic (appro5imately 
uniform) flow until we reach a lengthscale of approximately lo-’ cm (10 A). Such 
lengthscales are far beyond the means of optical observation and actually reach the 
limits of applicability of continuum mechanics. Van der Waals forces across the air 
gap bctween the long arcs at the cusp can be expected to have become important a t  
1000 A and the physics of disjoining pressures would then be important long before 
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FIGURE 17. Comparison of the measured values (dots) of the cusp tip with y = -cxf (lines). (a) STP, 
c = 0.4, (b) 500 cs silicone oil, c = 0.33, (c) castor oil, c = 0.29. The value of c is chosen to fit data 
points close to  the cusp point. Larger values of c open the cusp. This type of comparison between 
theory and experiment is only qualitative since we do not know the values of x for which the higher- 
order corrections become important. The higher-order corrections would be a composition of 
symmetric and antisymmetric functions like (3) and (9) in a combination determined globally. 
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Richardson’s solutions acts strongly. It thus appears reasonable to assume that the 
physical difficulties posed by Richardson’s solution are resolved a t  the molecular 
level. However these questions may ultimately be resolved at  the molecular level, we 
may regard Richardson’s solution, which has dimensionless vclocities proportional to 
logr‘/2nfi, as valid on observable lengthscales with r ,  dimensionless say with the 
cylinder radius a = 1.25 cm, of order one or less. Clearly on these lengthscales, the 
velocities logr‘/2nfl are not ‘large’, they are small, and our anlaysis based on 
perturbing uniform flow is a t  least qualitatively valid. Richardson’s expression (12) 
is a solution and it satisfies all the required interface conditions on the unperturbed 
interface, but is effectively unobservable a t  the intermediate scales a t  which (9) 
holds. 

The issue of a singularity a t  the free surface might be made clearer by a comparison 
to the analogous contact-line problem. There, one often observes a fluid-fluid-solid 
contact line moving steadily, while the local analysis based on the Stokes equations 
and the usual boundary conditions (Huh & Scriven 1971) predicts a singular stress 
tensor and energy dissipation. The singularity found by Huh & Scriven arises from 
a stream function proportional to r and it gives rise to a 1/r singularity in the stress 
and a logarithmic singularity in the force. Richardson’s singular solution (1) or (12) 
is slightly more singular than this and our intermediate singular expression (9) is 
slightly less singular. Subsequent theoretical work (e.g. Dussan V. 1976; de Gennes 
1985; and earlier papers cited therein) indicates that the singular solution should be 
regarded as valid a t  intermediate scales, and that a number of microscopic 
mechanisms (slip a t  high stress, precursor films, disjoining pressures, roughness, . . .) 
can remove the singularity with no macroscopically discernible effect. In  the worst 
possible case, the singularity is removed by a breakdown of the no-slip condition a t  
the molecular scale (Koplick, Banavar & Willemson 1988; Thompson & Robbins 
1989). 

We conclude this section with some remarks about viscoelastic fluids. Let us first 
consider a linear viscoelastic fluid ; we assume zero surface tension. In this case, the 
Newtonian linear velocity field given above actually provides a solutions even for the 
viscoelastic case ; the stresses, however, are now given by 

T(x, y )  = Jox G(s)  D ( x -  Us, y )  ds, (13) 

where G denotes the stress relaxation function and D the symmetric part of the 
velocity gradient. We note that the stresses given by (13) would be less singular a t  
the cusp than in the Newtonian case. On the other hand, if we use the second-order 
fluid approximation, T = ,uD + a1 U(aD/ax) ,  where 

,u = 1; G(s) ds, a1 = - sG(s) d(s), 

then the stresses for a given velocity field are more singular than in the Newtonian 
case. The second-order fluid cannot be valid approximation close to  thc cusp, but it 
may be valid some distance away from it. 

It appears doubtful whether linear viscoelasticity is very useful in interpreting 
experiments in non-Newtonian fluids. The extensional behaviour of such fluids is 
highly nonlinear, leading to extensional stresses much larger than those in Newtonian 
fluids with the same shear viscosity. We note that a non-cusped interface necessarily 
has a stagnation point, with the associated potential for a build-up of elongational 
stresses. Cusping gets rid of the stagnation point and alleviates some of these 

J: 
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FIQURE 18. Flow domain for numerical simulations. 

5.60 

7.45 

FIQURE 19. The top boundary is a free surface. Fluid flows in through the upper parts 0.8 < y < 1 
of the side boundaries and flows out through the middle part 0.3 < 5 s0.7 of the bottom boundary. 
The free surface evolves into a cusp. Surface tension is zero. Times of free surface evolution are 
indicated below each figure. 

elongational stresses. This effect should favour cusping in non-Newtonian fluids. The 
behaviour of non-Newtonian fluids at  cusps and in general a t  corners larger than 180' 
is not well understood (see Davies 1988 for some partial results). 

We do not understand the mechanism leading to a critical capillary number even 
in the Newtonian case. For non-Newtonian fluids, more dimensionless quantities can 
be formed, in addition to the capillary number introduced above. The critical 
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FIGURE 20. The top boundary is a free surface. This is a velocity vector plot close to the initial 
time for the flow in figure 19. Surface tension is zero. Time is 0.01. 

capillary numbers displayed in table 4 are of the same order of magnitude for non- 
Newtonian as for Newtonian fluids, but there is a definite trend to lower capillary 
numbers in the non-Newtonian case. To rectify this, one may think of replacing the 
Newtonian viscosity in the definition of Ca by some non-Newtonian viscosity. We 
note that the extensional viscosity of non-Newtonian fluids generally increases with 
elongation rate, so that such a procedure would give higher capillary numbers if we 
think of the flow as being primarily extensional. We give an alternative dimensional 
analysis based on the second-order fluid. For this we estimate elongational stresses 
as lal] U Z / l 2 ,  where 1 is a characteristic length, and we estimate stresses resulting from 
surface tension as all. This leads to the capillary number Ca = la,( CFIal. Next we 
estimate 1 as Ur, where 7 is a characteristic timescale, so we have Ca = lal[ U / m .  A 
possible estimate for 7 is lall/p; in this case we obtain the same capillary number as 
in the Newtonian case. It may be argued, however, that shorter relaxation times 
could be important. Using such shorter relaxation times for 7 would also raise the 
value of Ca. 

4. Numerical results 
I n  this section, we present numerical results that  show the formation of a 

singularity in a free surface for a model problem. The results are computed with the 
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FIGURE 21. The top boundary is a free surface. This is a velocity vector plot for the flow in 
figure 19 at a time when a cusp is forming. Surface tension is zero. Time is 3.78. 

Fluid Dynamics Package (FIDAP) Version 4.0, which uses the finite-element method 
(cf. Engelman & Sani 1986). The computed free surfaces first appear to have a corner, 
but as time evolves, this corner sharpens and looks more like a cusp. Unfortunately, 
the solution becomes polluted by wiggles a t  this point ; we shall explain the suspected 
reasons for this below. The numerical method is clearly not capable of resolving the 
details of the flow near the singularity; however, we observe that the development 
of a singularity and the time at which it develops persist under mesh refinement. We 
believe that the appearance of the singularity in the computations corresponds 
physically to the development of a cusp as observed in the experiments discussed 
above. 

The computational domain a t  time zero is a unit square in the (2, y)-plane, as 
shown in figure 18. The top boundary at y = 1 ,0  < x < 1, is a free surface. Along the 
upper parts of the vertical sides (x = 0, 0.8 < y < 1 and x = 1, 0.8 < y < l) ,  the 
boundary condition is zero vertical velocity and the horizontal velocity is half of a 
parabolic velocity profile. The latter has a maximum value of unity a t  y = 1. The 
boundary along 0 < y < 0.8 at  z = 0 and I ,  and along 0 < x < 0.3 at y = 0, and 
0.7 < x < 1.0 at  y = 0 is a solid wall. Along 0.3 < x < 0.7 at y = 0, the horizontal 
velocity is zero and the normal traction is 1, so that there is a negative pressure 
sucking the fluid out. The viscosity and density of the fluid are prescribed to be unity. 
The surface tension is varied, as described below. 
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0.02 6.66 40.31 

0.82 

19.10 69.30 

28.91 

FIQURE 22. The top boundary is a free surface. The flow conditions are the same as those of figure 
19, except for the presence of a sufficiently large surface tension, of 0.1, that keeps the free surface 
smooth. The evolution of the flow is shown. Times of free surface evolution are shown below each 
figure. 
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FIGURE 23. The final plot of figure 22 is shown here as a velocity vector plot, showing that the 
free surface is smooth. Surface tension is 0.1. Time is 88.80. 

A mixed velocity-pressure formulation is used. Interior elements are nine-node 
isoparametric quadrilaterals with biquadratic velocity and discontinuous linear 
pressure functions. Three-node quadratic elements are used on the free surface. 

An initial velocity field is computed by solving the Stokes problem with the 
position of the free surface kept fixed. The transient problem is then computed with 
the implicit backward Euler integration scheme. A t  each time-step, the Newton- 
Raphson scheme is used with a relaxation constant of 0.5. The initial time-step 
is 0.01, and thereafter a variable time increment is selected automatically by the 
code. 

We present results for various values of the surface tension. Figure 19 displays the 
formation of a cusp for zero surface tension. The mesh size is 21 by 17, and the mesh 
is displayed in each plot. There are 357 nodes, 80 interior elements and 10 elements 
on the free surface. The times shown on the plots are 0.02,0.89, 2.11 , 3.78, 5.60 and 
7.45. the cusp has started to form by time 3.78. The velocity vector plots for times 
0.01 and 3.78 are shown in figure 20 and 21 respectively. 

After formation of the cusp, wiggles appear in the free surface. We believe that this 
is due to improper handling of the kinematic free surface condition. At  a cusp, the 
kinematic free surface condition must be suspended ; fluid particles can move from 
the free surface into the interior. The code, however, does not know this. The 
computed results past the development of the cusp can therefore not be trusted. 

When surface tension is 0.1, the cusp does not form. Instead, a steady state is 
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FIGURE 24. The evolution of the flow of figure 19 with the addition of half the amount of surface 
tension present in the flow of figure 22 is shown, 0.05. A cusp forms. Times of free surface evolution 
are shown below each figure. 

attained, with a smooth curve at  the free surface. Figure 22 shows the evolution of 
the mesh at times 0.02, 0.82, 1.89, 3.66, 6.66, 11.57, 19.10, 28.91, 40.31, 53.53, 69.30 
and 88.80. By the latter time, a steady state has been reached. The velocity vector 
plot a t  time 88.80 is shown in figure 23. If a much larger amount of surface tension 
is present (e.g. l.O), the free surface does not move appreciably from its initial 
position, and a cusp does not form. 

The evolution of the free surface for surface tension 0.05 is shown in figure 24, 
where the times are 0.02, 0.86, 2.17, 4.27, 7.52, 12.01, 17.58, 21.01 and 27.2. A cusp 
starts to form by time 12.01. The velocity vector plot for time 21.01 is shown in figure 
25. At later times, a steady state is reached. These computations have been 
convergence tested on a finer mesh. 

The numerical results of this section show the formation of a cusp in slow viscous 
flow, for values of the surface tension that are in the order-of-magnitude range 
observed in the experiments described in the earlier sections. 

The numerical study of Lister (1989) of selective axisymmetric withdrawal into a 
sink from a stratified viscous two-layer system is similar to the problem studied here. 
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FIGURE 25. The velocity vector plot for the onset of cusp formation in the flow shown 
in figure 24 is displayed. Surface tension is 0.05. Time is 21.01. 

He finds that, below a critical value of surface tension, the free surface is drawn out 
into a thin filament stretching toward the sink. 

5. Conclusions and discussion 
(i) It is easy to  create two-dimensional cusped surfaces a t  liquid-air interfaces. 
(ii) In  all cases studied by us, the formation of cusped surfaces between air and 

liquid occurred for all non-Newtonian liquids and for some Newtonian liquids. Our 
criterion to  judge that a fluid is non-Newtonian is that  it will climb a rod. 

(iii) The formation of cusps is a critical phenomenon; other things being equal, the 
interface is rounded for small values of the streaming speed and becomes cusped at 
a critical speed and beyond. I n  non-Newtonian fluids this critical speed is very 
distinct; in Newtonian fluids it is less distinct and the change from a rounded to a 
pointed interface appears to  be gradual. 

(iv) Cusping is unusual at the interface of two liquids. Higher viscosity liquids in 
water form rollers, which are replaced by fingering flows when the viscosity of the 
liquid on the cylinder is too low to support a roller. 

(v) SAE 30 motor oil and water support a cusped interface with periodic scallops 
along the cusp which form sites for the fingering of water into oil. The motor oil is 
Newtonian and will not cusp in air. 

(vi) We have given a local analysis of the Stokes equation near a cusp. For zero 
surface tension, this local analysis yields an interface of the form y2 = -cx3 .  A small 
surface tension would change the exponents and, more seriously, it leads to point 
force at the cusp which has to be balanced by a singularity of the flow. This leads to 
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Richardson’s solution, which has an infinite backward velocity at the cusp and an 
infinite range of energy dissipation. However, we estimate that for the situations on 
which cusps are actually observed, Richardson’s solution would not become 
dominant until molecular lengthscales are reaches. At such lengthscales, one would 
have to modify the physics. 

(vii) Linear viscoelasticity would predict stresses a t  a cusp which are less singular 
than in the Newtonian case. However, it  seems likely that nonlinear extensional 
behaviour of non-Newtonian fluids is quite important. Experimentally, non- 
Newtonian fluids form cusps at lower speeds than Newtonian fluids. A qualitative 
explanation may be that cusping avoids the stagnation point inevitably present on 
smooth interface and thus relieves extensional stresses. 

(viii) Numerical simulations show results that are in qualitative agreement with 
the experiments ; cusps form for low values of surface tension, while a steady smooth 
interface is reached at higher values. 
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